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Abstract: A model is presented for the colloidal synthesis of semiconductor nanocrystals capturing the
reactions underlying nucleation and growth processes. The model combines an activation mechanism for
precursor conversion to monomers, discrete rate equations for formation of small-sized clusters, and
continuous Fokker-Planck equation for growth of large-sized clusters. The model allows us to track the
temporal evolution of the entire cluster size distribution and compute several experimental observables
including mean size and size distribution. The model predicts five distinct regions: generation of monomers,
small cluster formation, size distribution focusing due to precursor depletion, pseudo steady state region,
and size distribution broadening, with the latter three explicitly reproducing available experimental data at
larger cluster sizes. Furthermore, we identify two nondimensional parameter combinations and discuss
how these can be used to guide experiments to yield a more rational approach to synthesis modification.
Contrary to the common hypothesis that diffusion is essential for size distribution focusing, the model shows
that focusing can be achieved under pure reaction control. In addition, the model yields new insights into
the synthesis of small nanocrystals with narrow size distributions either by modulation of temperature over
the duration of nanocrystal synthesis or by introduction of small quantities of additives that enhance the
rate of precursor conversion to monomers. We show that for a given set of reaction parameters, there is
an optimum in the duration of high temperature and additive concentration minimizing polydispersity.

Introduction

Due to the their size tunable optical properties, colloidal
semiconductor nanocrystals have attracted significant attention
for use in applications ranging from electroluminescent devices1-5

to fluorescent labels for biological imaging.6,7 In most of these
applications it is essential to use nanocrystal samples that are
monodisperse and highly crystalline. Much work has been
devoted to developing adaptable chemistries for preparation of
high quality II-VI8-10 and III-V11,12 compound semiconductor
nanocrystals. However, despite a tremendous experimental effort

in chemistry development, the underlying mechanistic processes
leading to nanocrystal formation are still poorly understood. And
as a result, process development has required a laborious trial-
and-error approach to finding optimal set of reactants and
reaction conditions to yield the desired size nanocrystals with
minimal polydispersity. To reduce the amount of the demanding
laboratory trials, there is a general need to develop theoretical
models that can yield insights into the underlying nanocrystal
formation processes and provide guidelines for the rational
synthesis manipulation. There are several characteristics that
an ideal model must have. First, the model must accurately
capture the kinetics of nucleation and the evolution of the
nanocrystal size distribution, with a single a priori assumption
that only precursors are present initially. Second, the model must
contain the appropriate level of detail to accurately describe
experimental observations over the entire time domain of the
synthetic process, including size distribution focusing and
defocusing at short and long times, respectively. And last, the
model must be computationally fast to allow one to scan over
a broad range of experimentally relevant conditions, and also
sufficiently simple to yield a set of guiding principles for rational
synthesis manipulation. Availability of such a model can not
only accelerate the optimization of the existing synthetic routes
but also provide the fundamental understanding that is essential
for the development of new material chemistries.
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There are several classes of models that have been used in
the past to describe the nanocrystal formation process: classical
nucleation theory (CNT), single particle growth laws, a com-
bination of the CNT and a growth law, and rate equation based
models. The information gained from the different classes of
models and their associated shortcomings are summarized in
Table 1. CNT is frequently used to predict the rate of generation
of critical sized clusters based on solution supersaturation and
nanocrystal surface tension.13 A major disadvantage of this
approach is that characteristic critical nuclei sizes considered
by CNT are on the order of a few nanometers, which are
approximately equal to the final nanocrystal sizes, making CNT
unsuitable to describe nucleation at the nanoscale. On a more
practical note, CNT lacks information about the resulting size
distribution of the nuclei and the subsequent growth process,
both of which are essential aspects of the nanocrystalline
formation process. To describe the growth of nanocrystals, single
spherical particle first order reaction diffusion model has been
utilized.14,15 However, diffusion limited growth model has not
been successful in reproducing experimental results over a broad
range of reaction times16 due to some fundamental limitations.
First, a major drawback of the model is that it lacks mass
conservation, since it does not take into account the depletion
of monomers during the growth process. Second, this type of a
model does not provide any information about the particle size
distribution. To overcome these limitations, work has been done
on simulating the growth of ensembles of nanocrystals using
reaction-diffusion growth law equations individually or in
combination with CNT.15 Even though simulating an ensemble
of nanocrystals yields information on the evolution of the size
distribution, this type of an approach requires an a priori
assumption about the initial shape of the distribution, which
determines the resulting model predictions. Notably, the growth
law models for a single particle or an ensemble of particles have
been used to ubiquitously support the hypothesis that size
distribution focusing, an experimentally observed phenomenon,
is due to diffusion limited growth.12,15,17,18 However, our
estimates of the diffusion limited growth rate are several orders
of magnitude higher than those observed experimentally, thus
putting into question the validity of this hypothesis. As a result,
one of the main objectives of the present work is to test whether
size distribution focusing can be achieved under pure reaction
control.

Rate equation based models are formulated by developing
expressions to describe the rates of change of different sized
clusters, and then solving the expressions to evolve the complete
size distribution as a function of time. Since these models
explicitly consider different sized clusters, they have a potential
to overcome the lack of size distribution information inherent
in the CNT and growth law based approaches. Mantzaris has
combined a population balance approach with a reaction
diffusion model for a single particle to track the evolution of
the size distribution with variations in supersaturation.19 How-
ever, seeding of the initial distribution was applied thus capturing
only the growth process and lacking any insight into the early
stage nucleation events. Robb et al. have combined burst
nucleation, characterized by thermal equilibration of small sized
clusters, with a continuous master equation for clusters of sizes
greater than the critical size assuming diffusion limited growth.20

In this case, the distribution was seeded either with a thermal
distribution for subcritical clusters or in combination with a
normal distribution for supercritical clusters. Therefore, most
of the models thus far have required an a priori assumption for
the initial size distribution, a limitation that our work aims to
overcome.

The goal of this work is to develop a simple and general
model to describe kinetics of the colloidal nanocrystal formation
that captures the underlying chemistry, matches the experimental
observations over the entire time domain of nucleation and
growth, and yields a deeper fundamental understanding of the
synthetic process. The general framework of the model consists
of rate equations for precursor conversion to monomers and
monomer attachment and detachment to clusters leading to
growth and dissolution. Cluster formation is modeled by a
combination of a set of discrete rate equations and a continuous
Fokker-Planck equation for small and large clusters, respec-
tively. This formalism allows us to accurately track the entire
size distribution as a function of time with minimal computa-
tional intensity. The model is further simplified by nondimen-
sionalization reducing the number of variables and constants
to only two grouped parameters. The model predictions are
compared to the experimental observations to show that the
model predicts both size distribution focusing and defocusing
on different time scales. Moreover, the model shows that
focusing is obtained under pure reaction control in the absence
of diffusion limitation. Taking advantage of the simplicity of
the reduced model with only two key parameters, we gain insight
into the nanocrystal formation process, which can be applied
to rationally guide experimental process development. Finally,
using the general framework of the model, we test several
hypotheses for how synthesis can be modified to minimize size
polydispersity in generation of small sized nanocrystals.
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Table 1. Different Types of Models of Nucleation and Growth of Semiconductor Nanocrystals

model type key findings limitations

Classical nucleation theory (CNT) Nucleation flux based on surface energy of
particles and monomer supersaturation

No information about the size and the size distribution

Growth law for a single particle Evolution of the particle radius with time Ignores monomer depletion, lack of mass conservation.
No information about particle concentration or size
distribution

Combination of CNT and growth law Coupling of the nucleation flux with growth Requires seeding of the initial distribution

Rate equation based models Evolution of the entire size distribution with
time

Computationally intensive
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Model Description

One strategy that has proved successful in the formation of
monodisperse nanocrystal samples of high crystallinity is the
liquid phase colloidal synthesis. In a typical preparation route,
precursors are injected into a high temperature solvent and ligand
mixture leading to fast nucleation followed by a reduced
temperature slow growth. Initially dimethylcadmium was used
as a group II precursor and tri-n-octylphosphine selenide or
telluride or bis(trimethylsilyl)sulfide were used as group VI
precursors.8 The solvent mixture consisted of coordinating
ligands including tri-n-octylphospine (TOP), tri-n-octylphos-
phine oxide (TOPO), and phosphonic acid impurities and
degradation products that served to both block reaction sites
on the nanocrystals and to sterically passivate nanocrystals
preventing aggregation. It is worth noting that organometallic
compounds that are pyrophoric, toxic, and difficult to work with
have been slowly replaced with less hazardous and more stable
metal salt precursors21,22 and the number of different types of
ligands used has been expanded significantly.

To model the synthesis, we consider a well-mixed system of
precursors, P, that can react to form monomeric species, C1.
With only a few studies that have been aimed at understanding
the chemical mechanism of nanocrystal formation,23,24 the nature
of the monomeric species that participate in growth is still
largely unknown. Thus, for simplicity, we assume that there is
only one rate-limiting reaction step and that the reaction is
irreversible and first order in the precursor concentration, as
evident from a single exponential decay in precursor concen-
tration:23

where kf is the rate constant for monomer formation. Note that
binary semiconductor nanocrystals are generally prepared from
two precursors; however, variation in precursor reactivity
justifies the use of eq 1, with the monomeric unit containing
atoms of both types. Once the monomeric species are formed,
they can combine to form dimers, dimers can further react with
monomers to form trimers, and so on. In a typical preparation
of nanocrystals, bulky ligands are used to sterically stabilize
the growing clusters and since larger clusters have more binding
sites for ligand attachment, aggregation of nonmonomeric sized
clusters is highly unlikely. Thus, given the slower rates of
aggregation and significantly lower concentrations of nonmo-
nomeric clusters during nucleation, we assume that only
monomers significantly contribute to nanocrystal formation. The
growth and dissociation reactions via monomer attachment and
detachment for an n-sized cluster, Cn, can be described by:

where Gn and Dn are the time dependent growth and dissociation
transition frequencies of monomer attachment and detachment,
respectively.

Growth and Dissociation Rates. On the basis of eq 2, we
can formulate kinetic expressions for evolution of the cluster

concentrations. To do so requires us to develop expressions for
the attachment and detachment frequencies. First, we postulate
that under reaction control, the growth rate would be propor-
tional to the number of available sites on the cluster surface
and the monomer concentration. Since ligands can bind to the
cluster surface and block potential sites for monomer attachment,
the strength of binding and ligand concentration would deter-
mine the number of available surface sites. Second, we postulate
that the cluster dissociation rate is proportional to the number
of sites occupied by ligands, since ligands stabilize the mono-
meric units thus enhancing dissociation. Since typical concentra-
tions of ligands are significantly higher than those of monomers
leading to fast binding and ligands bind relatively weakly to
clusters leading to fast dissociation, we assume that on the time
scale of nanocrystal formation, free ligands are at equilibrium
with those bound to the clusters. This allows us to determine
the number of available or occupied sites for the calculation of
monomer attachment and detachment frequencies:

where Nsites,n is the total number of cluster binding sites, Keq is
the equilibrium constant for ligand binding to clusters, and L
and C1 are the ligand and monomer concentrations, respectively.
The number of surface sites is proportional to the exposed
surface area; thus, assuming that the nanocrystals are ap-
proximately spherical leads to:

where σ is the number of sites per unit area and F is the material
number density. Furthermore, the typical concentration of
ligands is several orders of magnitude higher than that of
nanocrystals, and as a result, the total free ligand concentration
remains approximately constant throughout the reaction. These
two assumptions significantly simplify the expressions in eqs 3
and 4 to:

where ka and kd are the effective rate constants, which include
the intrinsic rate of monomer addition and dissociation plus a
group of invariable terms: [(σ)/(F2/3)(36π)1/3]/(1 + KeqL) and
[(σ)/(F2/3)(36π)1/3](KeqL)/(1 + KeqL), respectively.

Governing Equations. On the basis of the growth and
dissociation frequency definitions, we obtain the rates of change
for the precursors, monomers, and a set of N discrete rate
equations for clusters:
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where N is the maximum considered cluster size.
Non-Dimensionalization. The rate expressions, eqs 8-10,

contain two dimensions for variables: concentration and time,
and three rate constants: ka, kd, and kf. To gain further insight
into the model predictions, we introduce nondimensional
concentration and time:

where concentration is scaled by the initial precursor concentra-
tion, P0, and time is scaled by the rate of monomer generation
from precursors. Substituting these definitions into eqs 8-10
leads to:

where parameters R and � (Table 2) are defined as:

The scaled growth and dissociation frequencies become:

Diffusion Control. The derivation above was presented for
the case of the reaction controlled growth. However, the model
can be easily adapted to incorporate a diffusion limitation. In
such a case the rate of growth would be proportional to the
radius of the nanocrystal as opposed to the available surface
area. Thus, the scaled diffusion limited growth rate would be
given by:

where the scaled parameter for addition via diffusion and the
effective addition rate are defined as (Table 2):

where DC1
is the monomer diffusivity. Furthermore, assuming

that the concentration of the monomer at the growth interface
is at pseudo steady state and equating the reaction and diffusion
fluxes, the effective growth rate in the special case of slow
diffusion becomes:

Temperature Modulation. As described above, in most recent
routes for batch synthesis of nanocrystals, injection of the
precursors is performed into a solvent maintained at an elevated
temperature relative to the ultimate growth temperature.8 This
hot injection technique can be modeled by an exponential
decrease in temperature from T0 to T∞:

where τT is the nondimensional time constant. Note that for a
well mixed fluid of initial temperature of T0 in a vessel with
surface temperature of T∞, the nondimensional time constant
can be interpreted as: τT ) kf(FfCp)/(h)(V/A)V, where Ff is the
fluid density, Cp is the heat capacity, h is the heat transfer
coefficient, ((V)/(A))V is the volume to area ratio of the vessel.

Furthermore, we postulate that temperature primarily affects
the rate limiting step of the precursor conversion to monomer.
Thus, given the activation energy for the reaction, the rate of
precursor consumption becomes:

Table 2. Summary of the Scaled Variables and Model Parameters

Variables cn ) (Cn)/(P0) Scaled cluster concentration
p ) (P)/(P0) Scaled precursor concentration
τ ) kft Scaled time

Primary Parameters R ) (kaP0)/(kf) Scaled growth rate parameter
� ) (kd)/(kf) Scaled dissociation rate parameter

Diffusion Control RD ) (ka,DP0)/(kf) Scaled growth rate parameter under diffusion limitation
Temperature Modulation ε∞ ) (E)/(kBT∞) Scaled activation energy

τT Scaled temperature decay time parameter
(T∞)/(T0) Ratio of final to initial temperature

Additives δ ) (kf, aP0)/(kf) Scaled enhancement in precursor conversion rate due to additives
a ) (A0)/(P0) Scaled initial additive concentration

dC1

dt
) kfP - kaC1

2 - ka ∑
n)1
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This modification is also incorporated into eq 14. Description
of this process requires the introduction of three new nondi-
mensional parameters: scaled activation energy, ratio of final
and initial temperature, and the temperature decay time constant
(Table 2):

Additives. Additives can also play a large role in the chemistry
of monomer formation either by enhancing or inhibiting the
rate of precursor conversion to monomers. For example,
introduction of stronger reducing agents in the form of dialkyl
phosphines in place of trialkyl phosphines has been shown to
significantly enhance the rate of PbSe nanocrystal formation.24

To incorporate the effect of rate enhancing additives (A), we
consider two competing reactions for monomer formation:

P + Af
kf,a

C1

where kf,a is the rate of precursor conversion to monomer in
the presence of an additive. Assuming that the precursor
concentration remains approximately constant and that kf,aP0 .
kf, the effective nondimensional rate for precursor conversion
to monomer becomes:

Two new nondimensional parameters become importantsthe
enhancement in the rate due to additives and the relative additive
content (Table 2):

Numerical Considerations. The discrete rate equations (eqs
13-15) can be integrated numerically. However, since the
largest cluster size can be on the order of 105 monomeric units,
the problem can be significantly simplified by approximating
the discrete rate equations by a continuous Fokker-Planck
partial differential equation (FPE). To obtain the continuous FPE
approximation to eq 15, we performed a Taylor series expansion
to the second order in the n-space on the gn-1cn-1 and
dn+1cn+1 terms yielding:25

where f is the distribution as a function of the continuous size
domain, n, and scaled time, τ. Note that the Taylor series
expansion is only accurate for large sizes (n . 1); as a result,

we employed discrete rate equations for small clusters (n <
nmatch), the FPE for large clusters, and a modified conservation
equation for the monomers:

where nmatch is the matching point and nmax is the maximum
considered cluster size. Note that nmax must be chosen suf-
ficiently large to diminish its effect on the numerical solution.
Two new boundary conditions were introduced with the discrete
and continuous concentrations and fluxes matched at nmatch and
the no-flux boundary condition applied at nmax. The Chang-
Cooper (CC70) weighted finite difference scheme26-28 was
applied to discretize the n-dependent part of the FPE, as
described in detail in the Supporting Information. The weighting
coefficients in the CC70 method were determined by explicitly
equating the exact and approximate fluxes leading to a non-
negative and particle conserving solution. A power law expres-
sion was applied for the finite difference mesh spacing of the
FPE for m g nmatch:

where λ was determined from the number of the desired mesh
points. All calculations reported in this work were performed
with the maximum cluster size equal to 50 000, the matching
point of 10, and the total number of mesh points, including
discrete rate equations, equal to 500. Increasing these values
did not significantly change the resulting size distribution.
Integration in time was performed using a variable-coefficient
ordinary differential equation solver, VODE,29 available through
the ODEPACK Fortran library. In all cases, initial values of
the scaled precursor concentration and the scaled cluster
concentrations were set to unity and zero, respectively.

Results

The basic model described by eqs 13-15 is too complex to
be solved analytically. A numerical solution, on the other hand,
can be easily obtained with a reduced requirement for compu-
tational time by combining discrete rate equations for small
clusters and discretized FPE (eq 31) for large clusters. The
evolution of the size distribution, as represented by the scaled
concentration, cn, for a typical set of two main parameters, R
) 108 and � ) 101, is presented in Figure 1a. The color of the
2-D plot corresponds to the log of the scaled concentration. The
vertical cross sections allow us to visualize the change in the
concentration of a given size cluster as a function of time, while
the horizontal cross sections show the size distribution of clusters
at any given time point. Several snapshots of the concentration
profile at different values of τ are shown in Figure 1 b.

There are several experimentally relevant quantities that can
be computed based on the concentration profile including the
mean number (µn) and radius (µR), number (σn

2) and radial (σR
2 )

variance, reaction yield (Y), and total concentration of clusters
(ctot):
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Pf
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A0
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(30)

∂f
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) ∂

∂n([d - g + 1
2

∂

∂n
(g + d)]f + [1

2
(g + d)] ∂f

∂n) (31)

dc1

dτ
) p - ∑

n)1
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n
dcn

dτ
- ∫nmatch

nmax
n
∂f
∂τ

dn (32)

nm+1 ) nm + (1 + λ)m-nmatch (33)
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In this work, we use CdSe number density, FCdSe ) 17.8 nm-3,
as the reference in calculation of the mean radius. For any other
material, the mean radius can be obtained by:

Note that the percent deviation in radius ((σR)/(µR)) is material
independent.

Temporal evolution of the mean number size and one standard
deviation above and below the mean are shown in Figure 1a.
Evolution of the mean radius and the percent radial distribution
are shown in Figure 1c. Evolution of the monomer and the total
cluster concentration along with reaction yield are shown in
Figure 1d. Examination of Figure 1c and d shows that there
are five distinct regions in the behavior of the model that are
summarized in Table 3. In region I, the precursor concentration
remains effectively unchanged, while the monomer concentra-
tion increases approximately linearly with time until it reaches
a maximum, when the rate of monomer depletion due to cluster
growth, (-(dc1)/(dτ))g, exceeds the rate of monomer formation
from precursors. In region II, the precursor concentration still
remains effectively unchanged, while the monomer is depleted
and the mean cluster size and the percent size distribution are
increased. The boundary between region II and III is defined
by the maximum in the percent size distribution. As precursor
concentration drops and the rate of monomer depletion due to
growth decreases and the rate of monomer generation due to
dissociation increases in region III, the mean size increases while
the percent size distribution narrows. The focusing stops when
the precursor is depleted leading to a pseudo steady state
behavior in region IV, characterized by almost invariant
monomer concentration, mean size, and size distribution. Note
that in region IV, the total rate of monomer depletion and
generation are equal but nonzero. Finally, in region V, the total
rates of monomer depletion and generation decrease to zero,
the mean size begins to increase and the percent size distribution
broadens as the system slowly approaches the equilibrium
distribution:

with reduced monomer concentration obtained implicitly from
mass conservation.

Figure 2 illustrates the dependence of the model behavior on
the values of the two parameters: R and �. In particular, the
evolution of the mean radius and percent radial size distribution,
Figure 2a and b, are shown for order of magnitude variation in
R from 105 to 109 at two values of parameter �: 10-1 and 101.
By increasing the scaled growth parameter R, the time onset of
the focusing regime is decreased, while the time onset of the
defocusing region is delayed. Increase in the scaled dissociation
rate parameter � on the other hand, does not affect the onset of

µn ) 〈n〉 )
∫ ncndn

∫ cndn
(34)

µR ) 〈R〉 ) ( 3
4πF)1/3

〈n1/3〉 ) ( 3
4πF)1/3 ∫ n1/3cndn

∫ cndn
(35)

σn
2 )

∫ (n - 〈n〉)2cndn

∫ cndn
(36)

σR
2 ) ( 3

4πF)2/3 ∫ (n1/3 - 〈n1/3〉)2cndn

∫ cndn
(37)

Y ) 1 - p (38)

ctot ) ∫ cndn (39)

〈R〉 ) 〈R〉CdSe(FCdSe

F )1/3

(40)

cn ) �
R(R�c1)n

n-2/3 (41)

Figure 1. Model predictions for a typical set of parameters with R ) 108

and � ) 101. (a) Concentration profile as a function of cluster size and
scaled time. Color scale corresponds to the log of the concentration. The
solid and dashed black lines correspond to the mean of the size distribution
and one standard deviation above and below the mean. (b) Snapshots of
the size distribution, cn versus n, at different values of the scaled time. (c)
Evolution of the mean radius computed for CdSe and percent radial
distribution as a function of scaled time. (d) Evolution of the total cluster
and monomer concentration and reaction yield as a function of the scaled
time.
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the focusing regime, but does accelerate the time onset of
defocusing. Furthermore, for large values of � and small values
of R the pseudo steady state regime is never reached, as
demonstrated in Figure 2b in the case of R ) 105 and � ) 101.
For a set of parameters where the pseudo steady state regime is
achieved, we can map out the minimum attained radial size
distribution, Min (σR)/(µR), and the corresponding mean radius,
Min µR, as shown in Figure 2c. In general, an increase in the
scaled growth rate parameter R leads to larger mean radius and

a smaller percent size distribution in the pseudo steady state
regime. Furthermore, at a given value of R, an increase in �
leads to a decrease in the mean size and an increase in the size
distribution.

Temperature Modulation. Temperature plays an important
role in the kinetics of nanocrystal formation, for example,
synthetic routes incorporating an injection into a hot solvent
have become widely accepted since the first demonstration.8

To model this behavior, we modify the model to include
temperature-induced variation in the rate of precursor conversion
to monomer. We assume that the temperature is exponentially
decaying from an initial value of T0 to a final value of T∞.
Furthermore, we assume that the temperature effect on the
cluster growth and dissociation rates is small relative to the effect
on the monomer formation rate from precursors. Based on this
assumption, the modified rate for precursor conversion to
monomers is presented in eq 25 that incorporates three new
parameters: scaled activation energy, ratio of final to initial
temperatures, and the decay time of high temperature.

The evolution of the concentration profile with time for the
same set of two main parameters as in Figure 1, R ) 108 and
� ) 101, with ε∞ ) 30, τT ) 10-4, and (T∞)/(T0) ) 0.8 is shown
in Figure 3a. The evolution of the mean radius and percent radial
size distribution are shown in Figure 3c and d. The evolution
of the monomer and total cluster concentrations with and without
temperature modulation are shown in Figure 3e-f. Comparison
of Figure 1a and Figure 3a and the curves in Figure 3c-f reveals
that temperature modulation leads to a faster increase in the
monomer concentration with the maximum monomer concentra-
tion being an order of magnitude larger with only a small
decrease in the precursor concentration. Furthermore, once the
temperature starts to decay, the monomer concentration stabi-
lizes, leading to an emergence of a new regime with almost
invariant cluster concentrations. Further generation of monomers
at the reduced final temperature leads to focusing of the size
distribution and an increase in the mean size. Once the precursor
is depleted, the system approaches the pseudo steady state
regime with a mean cluster size and percent size distribution
both smaller than in the system with no temperature modulation.
With the faster onset of the defocusing regime with temperature
modulation, the system approaches the same equilibrium state
as without temperature modulation, eq 41.

Figure 4a and b demonstrates how, for a given reduced
activation energy, the choice of the magnitude and duration of
the temperature increase affects the observed minimum radial

Table 3. Description of Different Regions of Model Behavior Labeled in Figure 1c and d

Figure 2. Evolution of the mean cluster radius computed for CdSe and
the percent radial distribution at order of magnitude increments of scaled
growth rate parameter R, ranging from 105 to 109 for (a) � ) 10-1 and (b)
� ) 101. (c) Minimum attained percent in the radial size distribution and
the corresponding mean radial size at different values of the scaled growth
and dissociation rate parameters R and �, respectively.
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size distribution and the mean size. Values are shown at two
different growth rates of R equal to 107 and 109. The data show
that for short temperature pulses, the observed mean radial size
and size distribution remain approximately unchanged. As
shown in Figure 4a and b, intermediate values of the time
duration lead to smaller sizes and size distributions. However,
if the temperature remains high for too long, the precursor is
depleted much faster and the duration of the focusing regime
is greatly diminished, thus leading to a greater total number of
clusters of smaller size with a broader size distribution. In
general, higher growth rate, R, activation energy, ε∞ (Figure
4), and initial to final temperature ratio, (T∞)/(T0) (data not
shown), all lead to a more pronounced decrease in the size and
the size distribution at lower values of τT. Thus, to minimize
polydispersity, duration of the high temperature region must
be reduced for higher values of these parameters.

Additives. Another factor that plays an important role in
controlling nanocrystal formation is addition of species that can
either accelerate or hinder the rate of precursor consumption.
For example, impurities in tri-n-octylphosphine (TOP) in the
synthesis of CdSe have a strong effect on controlling reaction
kinetics. As discussed previously, certain additives can lead to
much faster rates of precursor conversion to monomeric species.
Assuming the concentration of additives is much smaller than
that of precursors, and that the rate of conversion is much faster
in the presence of additives, a modified rate of precursor
conversion to monomers was introduced in eq 28. The modified
expression contains two new parameters: relative additive

content, a, and scaled rate enhancement factor, δ (Table 2). The
evolution of the concentration profile with time at R ) 108 and
� ) 101, with a ) 1% and δ ) 102 is shown in Figure 3b. The
evolution of the mean radius, percent radial distribution,
monomer concentration, and the total cluster concentration are
shown in Figure 3c-f. Comparison of the concentration profiles
between Figure 1a, Figure 3a, and Figure 3b shows that the
effect of additives is similar to that of temperature decay, such
that both lead to a pseudo steady state with the mean cluster
size and percent size distribution at a lower value than in the
system with no temperature modulation and no additives.

For a given intrinsic growth rate, R, the relative concentration
and the enhancement in rate due to additives have a strong
impact on the mean radial size and size distribution that can be
achieved, Figure 4c and d. The data show that low concentra-
tions of additives do not significantly change the observed mean
radial size and size distribution. However, slightly higher
concentrations of additives lead to smaller sizes and size
distributions. Similar to the effect of long high temperature
duration, high concentrations of additives can lead to significant
depletion of precursors, thus reducing the duration of the
focusing regime, leading to a greater total number of clusters
of smaller size with broader distribution. Comparison of Figure
4c and d shows that at higher scaled growth rate, smaller amount
of additives can achieve a significant decrease in both the mean
size and size distribution. Furthermore, increasing the strength
of the additive enhances the focusing for intermediate concen-
trations of additives; however, at higher additive content it can
also lead to smaller sizes and broader distributions.

Discussion

In this work, we have developed a kinetic model of nucleation
and growth that can be applied to describe the liquid phase
synthesis of nanocrystals. The model assumes that following a
slow process of precursor conversion to monomers, monomers
combine to form dimers, then trimers, then larger and larger
clusters. Nondimensionalization of the model allows us to reduce

Figure 3. Comparison of model predictions in the absence and presence
of temperature modulation (ε∞ ) 30, τT ) 10-4, (T∞)/(T0) ) 0.8) or additives
(δ ) 102, a ) 10-2) for the same set of the main model parameters shown
in Figure 1, R ) 108 and � ) 101. Concentration profile as a function of
cluster size and scaled time in the case of (a) temperature modulation and
(b) additives. Evolution of the (c) percent radial size distribution, (d) mean
radius computed for CdSe, (e) monomer concentration, and (f) total cluster
concentration as a function of scaled time in the case of temperature
modulation (red), additives (blue), and the base model (black).

Figure 4. (a, b) Effect of temperature modulation on the minimum attained
radial size distribution and the corresponding mean radius (CdSe) at different
values of the scaled activation energy parameter, ε∞, and the mean scaled
temperature decay time, τT at (T∞)/(T0) ) 0.8. (c, d) Effect of additives at
different values of the additive rate enhancement parameter δ and scaled
additive content, a. In both cases, values are shown for � ) 10-3 and: (a,
c) R ) 107 and (b, d) R ) 109. Increase in the marker size corresponds to
an order of magnitude increase in the values of τT and a.
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the number of variables and constants to two nondimensional
parameters, R and �, that correspond to scaled growth and
dissociation rates, respectively. Thus, a single set of values of
R and � can be used to describe a variety of experimental
conditions. Furthermore, combining discrete rate equations for
small sized clusters and discretization of the corresponding
continuous Fokker-Planck equation for larger sized clusters
significantly reduces the computational intensity of the problem,
while at the same time retaining a maximum amount of
information. For example, interpolation of the results allows
us to track the concentration of every sized cluster as a function
of time. Consequently, it not only gives information about the
evolution of the mean and the variance, but also the exact shape
of the size distribution.

It is important to compare the phenomenological behavior
of the model with experimental observations at different time
scales. Data from Yen et al.30 reproduced in Figure 5a shows
the evolution of the CdSe nanocrystal mean radius and percent
in the radial size distribution as a function of the residence time.
However, a problem arises at short times, where growth solution
post processing makes it difficult to extract information on the
entire size distribution for small clusters. For larger nanocrystals
this information is much more readily available, as demonstrated

in the case of MnO synthesis31 (Figure 5b). First, at short times,
the model corroborates the experimental observation of an
increase in the mean nanocrystal size and a simultaneous
focusing of the percent size distribution. The observed radial
size distributions are shown to be on the order of 10-20%,
which are similar to the results obtained experimentally at the
most favorable experimental conditions. Second, the model
predicts that the focusing region is followed by a pseudo steady
state region with an almost invariant mean size and size
distribution. Again, this has also been observed experimentally
both for MnO and CdSe, as evident by region IV of Figure 5a
and an asymptotic approach to steady state in Figure 5b,
respectively. Finally, at long times the distribution shifts to larger
sizes with a simultaneous increase in the percent size distribution
and a decrease in the total number of nuclei, region V of Figure
5b. This explains why, to achieve a narrow size distribution,
the synthesis of nanocrystals is thermally quenched once the
desired size is attained. Thus, in the time scales that can be
resolved experimentally, regions III, IV, and V of the model
that correspond to the focusing, pseudo steady state, and
defocusing regimes, match the experimental observations.

Another important aspect of the model is its simplicity. The
model has only two main parameters, R ) (kaP0)/(kf) and � )
(kd)/(kf), that can be used as experimental guides in tuning the
operating conditions to achieve the desired nanocrystal size and
size distribution. For example, by increasing R, we can increase
the mean size and decrease the minimum in the size distribution
achieved during focusing. Also, by decreasing � or by increasing
R, we can extend the onset of defocusing, thus allowing for a
broader time window to achieve maximum narrowing of the
size distribution. There are several ways these parameters can
be adjusted experimentally. First, the initial concentration of
precursors can be increased to increase R. Second, the rate of
monomer addition, ka:

can be increased by decreasing the ligand concentration or
introducing weaker binding ligands. Steric effects would also
suggest that smaller monomers would exhibit a higher rate of
addition; therefore, since monomers are stabilized by ligands,
shortening the hydrocarbon chain lengths on the ligands would
lead to an increase in ka. Third, the rate of dissociation, kd:

prior to cluster surface saturation, KeqL < 1, can be decreased
by decreasing ligand concentration or by utilizing weaker
binding ligands. Furthermore, introducing ligands that bind
weaker to the monomers is another way of decreasing the
dissociation rate. Lastly, the rate of precursor conversion to
monomers, kf, can be increased by substituting more reactive
precursors. Note that the model does not include cluster
aggregation, which might become a problem if ligands are too
loosely bound and do not effectively stabilize the nanocrystals.

Another important way the reaction can be controlled is by
changing the temperature, and thus changing the rate of
precursor conversion to monomers. Performing the reaction at
a lower temperature, thus decreasing kf, leads to an increases

(30) Yen, B. K. H.; Stott, N. E.; Jensen, K. F.; Bawendi, M. G. AdV. Mater.
2003, 15 (21), 1858–1862.

(31) Chen, Y.; Johnson, E.; Peng, X. J. Am. Chem. Soc. 2007, 129 (35),
10937–10947.

Figure 5. (a) Mean radius and percent in the radial size distribution as a
function of residence time in the synthesis of CdSe nanocrystals using a
capillary reactor. (b) Time evolution of the percent in the radial size
distribution and mean radius in the synthesis of MnO particles. Figure
reproduced from Chen, et al. J. Am. Chem. Soc. 2007, 129 (35). Figure
reproduced from Yen et al. AdVanced Materials 2003, 15 (21).

ka ∝ 1
1 + KeqL

(42)

kd ∝
KeqL

1 + KeqL
(43)
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in R and � parameters and an increase in the real time that
corresponds to a given value of τ. The faster scaled addition
rate would allow for larger nanocrystals with narrower size
distributions. However, if the temperature is too low, where
dissociation becomes important, a higher value of � would also
lead to faster onset of defocusing thus, decreasing the time
window for focusing. As a result, temperature must be chosen
carefully to balance the growth and dissociation contributions.
As the guiding principle for experiments, the simplest way to
estimate the value of kf is by observing the time required to
reach a reaction yield of 50%:

The Arrhenius form of kf can be obtained from experimental
values of t1/2 at different temperatures. For example, for the
synthesis of CdSe in the method described by Yen et al.,30 the
activation energy for the precursor conversion reaction is
approximately 20 kcal/mol with pre-exponential factor of
4 ·105 s-1. In the temperature range considered, 220-320 °C,
there is at most an order of magnitude variation in kf with the
yield approaching 70% at higher temperatures.

Much importance in the experimental literature is placed on
the necessity of the diffusion limitation to observe size distribu-
tion focusing based on simple first order reaction and diffusion
model for a single particle growth.14,15 To test this hypothesis,
we can estimate the rate of growth under diffusion limitation
and compare it to the experimental observations. Under diffusion
limitation, the flux of monomers to the cluster must equal the
rate of cluster growth:

where Vm is the molar volume, D is the diffusivity, and Cm is
the concentration of the monomers. Using Stokes-Einstein
relation, a typical value for monomer diffusivity would be on
the order of 10-11 - 10-9(m2)/(s). Therefore, for nanocrystals
with a final radius on the order of a few nanometers, the
estimated diffusion limited radial growth rate would be:

Under typical experimental conditions however, the nanoc-
rystals grow at most 1 (nm)/(s), which is several orders of
magnitude slower than the diffusion limited estimate.

To further explore this issue, we compare the behavior of
the model under reaction and diffusion limitation (eq 23). In
general, the diffusion limited growth model behaves similarly
to the reaction limited growth exhibiting the precursor conver-
sion to monomers, decay in monomer concentration, focusing,
pseudo steady state, and defocusing regimes. Figure 6 shows
the minimum attained radial size distribution and the corre-
sponding mean radius as a function of the scaled growth
parameters R and RD for reaction and diffusion controlled
conditions, respectively. The data show that for small mean
cluster sizes, diffusion limitation does lead to narrower size
distributions, with an improvement of about 5% in the radial
distribution. However, for larger clusters, n > 4000, RCdSe > 4
nm, in the size region where diffusion limitation is likely to be

of primary concern, reaction control leads to narrower distribu-
tions. Furthermore, our model indicates that focusing of the size
distribution can be achieved under pure reaction control, where
the growth rate is proportional to the surface area (∼n2/3). To
our knowledge, this is the first time that this has been
demonstrated.

As shown in Figure 2, the model predicts that larger
nanocrystals with narrower size distributions can be prepared
by increasing the growth rate parameter, R. At the same time,
it is not obvious how to prepare small nanocrystals with narrow
size distributions. This has also been the case experimentally:
the smaller the desired final size of the nanocrystal, the more
difficult it is to find the optimal conditions for their synthesis.
In Figure 4 we show that generation of small and narrowly
distributed nanocrystals can be achieved using either temperature
modulation or targeted introduction of additives. In the first
approach, the idea is to start the reaction at high temperature,
inducing fast generation of small clusters and depletion of
monomers, and then to let the temperature decay to allow for
slow growth as more monomers are produced from precursors.
For a given chemistry, duration of high temperature, growth
rate, and ratio of initial to final temperature can be optimized
to achieve a desired size and minimize the size distribution.
This is similar to the idea of the hot solvent injection method
used for the batch synthesis of nanocrystals.8 The second
approach is to introduce small quantities of additives that lead
to faster rates of precursor conversion, making more monomers
and inducing fast formation of small clusters. As the additive
is depleted, the reaction slows down, leading to larger total
concentration of smaller sized nanocrystals with narrower
distributions. Again, the additive content and strength can be
systematically varied to produce the desired size and minimize
the size distribution. In practice, the additive effect would also
explain why, for the same synthetic route yielding CdSe under
the same conditions, different batches of tri-n-octylphosphine
can produce nanocrystal samples with drastically different sizes
and size distributions.

Conclusions

In summary, we have developed a kinetic model to describe
the combined phenomena nanocrystal nucleation and growth.
The model is general and can be applied to describe the synthesis
of many different types of nanocrystals under a variety of
experimental conditions. Furthermore, the simplicity of the
nondimensional model with only two parameters yields a better

kf )
-ln(2)

t1/2
(44)

4πR2

Vm

dR
dt

) 4πDRCm (45)

dR
dt

) D
R

VmCm ≈
10-11m2

s

10-9m
× 10-28m3 × 1025m-3 ) 10-5m

s
(46)

Figure 6. Minimum attained radial size distribution and the corresponding
mean radius computed for CdSe at different values of the growth rate
parameter R under reaction (gn ∝ n2/3) and RD under diffusion (gn ∝ n1/3)
limitation.
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understanding of the nanocrystal formation process and allows
for a rational modification of the experimental conditions to
achieve desired sizes and size distributions of nanocrystals. The
model also shows that, contrary to the accepted hypothesis,
diffusion limitation is not required for size distribution focusing,
and that focusing is achieved under pure reaction control. In
addition, the model allows us to test different schemes for
generation of small nanocrystals with narrow size distributions,
for example, by either modulating temperature or by targeted
introduction of additives. In the future, using the formalism
developed in this work, it would be possible to develop a more
refined understanding of the nanocrystal formation process. For
example, coupling the model with a detailed description of the
precursor activation chemistry, based on experiments or first-

principles calculations, can yield a better understanding of what
role specific precursors, ligands, and additives play in the
nanocrystal formation process.
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